PHY-DSE-4: DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION (Credits: Theory-04, Practicals-02)

F.M. = 75 (Theory - 40, Practical – 20, Internal Assessment – 15)

Internal Assessment [Class Attendance (Theory) – 05, Theory (Class Test/ Assignment/ Tutorial) – 05, Practical (Sessional Viva-voce) - 05]

Theory: 60 Lectures

UNIT-1: Digital Circuits

Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. (4 Lectures)

De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Minterms and Maxterms. Conversion of a Truth Table into an Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map. (5 Lectures)

Binary Addition. Binary Subtraction using 2's Complement Method). Half Adders and Full Adders and Subtractors, 4-bit binary Adder-Subtractor. (4 Lectures)

UNIT-2: Semiconductor Devices and Amplifiers:

Semiconductor Diodes: p and n type semiconductors. Barrier Formation in PN Junction Diode. Qualitative Idea of Current Flow Mechanism in Forward and Reverse Biased Diode. PN junction and its characteristics. Static and Dynamic Resistance. Principle and structure of (1) LEDs (2) Photodiode (3) Solar Cell.

(5 Lectures)

Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Active, Cutoff, and Saturation Regions. Current gains α and β . Relations between α and β . Load Line analysis of Transistors. DC Load line and Q-point. Voltage Divider Bias Circuit for CE Amplifier. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output

Impedance. Current, Voltage and Power Gains. Class A, B, and C Amplifiers.

(12 Lectures)

UNIT-3: Operational Amplifiers (Black Box approach):

Characteristics of an Ideal and Practical Op-Amp (IC 741), Open-loop& Closed-loop Gain. CMRR, concept of Virtual ground. Applications of Op-Amps: (1) Inverting and Non-inverting Amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Zero Crossing Detector. (13 Lectures)

Sinusoidal Oscillators:Barkhausen's Criterion for Self-sustained Oscillations.Determination of Frequency of RC Oscillator(5 Lectures)

UNIT-4: Instrumentations:

Introduction to CRO: Block Diagram of CRO. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference.

(3 Lectures)

Power Supply: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers Calculation of Ripple Factor and Rectification Efficiency, Basic idea about capacitor filter, Zener Diode and Voltage Regulation (6Lectures)

Timer IC: IC 555 Pin diagram and its application as Astable & MonostableMultivibrator(3 Lectures)

Reference Books:

- 1. Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill.
- 2. Electronic devices and circuits, S. Salivahanan and N. Suresh Kumar, 2012, Tata Mc-Graw Hill.
- 3. Microelectronic Circuits, M.H. Rashid, 2ndEdn., 2011, Cengage Learning.
- 4. Modern Electronic Instrumentation & Measurement Tech., Helfrick&Cooper, 1990, PHI Learning
- Digital Principles & Applications, A.P. Malvino, D.P. Leach & Saha, 7th Ed.,2011, Tata McGrawHill
- 6. Microelectronic circuits, A.S. Sedra, K.C. Smith, A.N. Chandorkar, 2014, 6th Edn., Oxford University Press.
- 7. Fundamentals of Digital Circuits, A. Anand Kumar, 2nd Edition, 2009, PHI Learning Pvt. Ltd.
- 8. OP-AMP and Linear Digital Circuits, R.A. Gayakwad, 2000, PHI Learning Pvt. Ltd.

PHY-DSE-4 LAB: DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTS

60 Lectures

- 1. To measure (a) Voltage, and (b) Frequency of a periodic waveform using a CRO
- 2. To verify and design AND, OR, NOT and XOR gates using NAND gates.
- 3. To minimize a given logic circuit.
- 4. Half adder, Full adder and 4-bit Binary Adder.

- 5. Adder-Subtractor using Full Adder I.C.
- 6. To study IV characteristics of PN diode and Zener diode.
- 7. To study the characteristics of a Transistor in CE configuration.
- 8. To design a CE amplifier of a given gain (mid-gain) using voltage divider bias.
- 9. To design an inverting amplifier of given gain using Op-amp 741 and study its frequency response.
- 10. To design a non-inverting amplifier of given gain using Op-amp 741 and study its Frequency Response.
- 11. To design a Wien Bridge Oscillator using an op-amp.
- 12. To determine the band gap by measuring the resistance of a thermistor at different temperature.
- 13. Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.
- 14. Electronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall.
- 15. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall.
- 16. Electronic Principle, Albert Malvino, 2008, Tata Mc-Graw Hill.